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Abstract. This paper addresses the problem of simultaneously aligning
a batch of linearly correlated images despite large misalignment, severe
illumination and occlusion. Our algorithm assumes that the gradient ori-
entation of images, if correctly aligned, can be robustly represented by an
underlying transformed principal gradient orientation (TPGO) subspace.
With such a linear representation prior, the proposed method connects
PGO subspace learning, gradient orientation reconstruction, and batch
alignment in a unified framework with an efficient alternating optimiza-
tion solution. Besides inherent robustness from the gradient orientation
and the low-rank structure, TPGO maintains the pixel-accurate registra-
tion precision and the efficient optimization of Lucas & Kanade frame-
work. Experimental results show TPGO based batch alignment is more
precise and robust than the state-of-the-art methods such as RASL and
SIFT feature base Congealing. Moreover, integrated with a SIFT based
pre-alignment procedure, TPGO is able to align a large number of im-
ages of multiple objects with large deviation, illumination, and occlusion
in the precision that surpasses the handcrafted alignments (provided by
the standard database distributions), in term of our face recognition ex-
periments on the Extended Yale B, AR and FERET databases.

1 Introduction

Batch Image alignment is an interesting task of automatic batch alignment of an
ensemble of misaligned images to a fixed canonical template in an unsupervised
manner. As the dramatic increase in the amount of visual data available, the im-
age congealing technique has numerous applications in object detection, tracking,
recognition, and retrieval. For instances, previous works on face recognition has
proven that the recognition performance highly depend on the preciseness of the
image alignment [1][2][3][4]. Two basic assumptions underlying most algorithms
are that 1) images are subjected to randomly selected transformation of known
nature, such as translation, similarity or affine, and that 2) images reside in a low
dimensional subspace approximately after aligned to a fixed canonical template,
e.g. faces [5][6], handwritten digits, etc. Clearly, the fundamental issue on batch
image alignment is the multivariate similarity measures of an image ensemble,
and the associated optimization methods.

The pioneer work of Learned-Miler [7], named congealing, constructed the
multivariate similarity measure as a sum of entropies of pixel values at each
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pixel location in the whole image ensemble. To address the nonlinearity of en-
tropy function, an sequential parameter update based optimization strategy is
employed. In this congealing framework, clustered SIFT feature based entropy
was also proposed to address the complex variations such as illumination and
local deformation involved in the image ensemble[8]. To remedy the difficulty in
the nonlinear optimization of congealing method, Cox et al. [9] proposed a least-
square congealing method by employing the sum of squared distances between
pairs of images to measure the similarity of the image ensemble. An inverse-
compositional strategy was further proposed to address the “irrecoverable lost”
problem caused by applying a single warp to a stack of images, which makes
LS-Congealing applicable to align a large number of images. Both congealing
methods ideally assume the matrix of aligned images will have exactly rank one,
which may not be realistic for images with complex variations.

The other family of algorithms have been proposed to address the robust
alignment problem by taking the advantage of the low-dimensional subspace
structure. The early work of Frey and Jojic [10] used an EM algorithm to fit
a low dimensional linear model, subject to domain transformation drawn from
a know group. Schweitzer [11] proposed a more practical iterative procedure
that jointly optimize the eigenspace model and the transformation parameters.
Baker et al. used a similar technique to construct the active appearance model
[12]. The Robust Parameterized Component Analysis (RPCA) algorithm used
the robust fitting function to reduce the influence of occlusion and corruption.
Vadaldi et al. [13] proposed a straightforward measure based on the dimension of
subspace spanned by the aligned image, i.e. the rank of the image data matrix,
but this measure may be sensitive to small corruption or occlusion of the images.
To address this problem, Peng et al. [14] formulated a more robust measure by
considering both the dimension of the subspace and the L1 norm of residuals
from the subspace, and propose an influential method named RASL.

A major limitation of current batch alignment techniques is that their ro-
bustness is not enough to address the severe illumination and occlusion in the
realistic images. Recent advance in image representation [15] have shown that
it is indeed possible to invariantly represent facial images despite significant
changes of illumination and occlusion, using the low-rank principal subspace of
image gradient orientation. Inspired by this breakthrough work [15], this pa-
per proposes a new algorithm to achieve enhanced robustness by taking
advantage of both the illumination/occlusion invariance and the low
rank property of the aligned image gradient orientation. Specifically,
the contributions of this paper are as follows.

(1) A new batch alignment algorithm called Transformed principal
gradient orientation (TPGO) is proposed for robustly aligning linear cor-
rected images, despite uncontrolled lighting and large occlusions. Our algorithm
assumes that the gradient orientation of unaligned image, if correctly aligned,
can be robustly represented by a linear combination of the bases of an underlying
low dimensional Transformed principal gradient orientation (TPGO) subspace.
With such a linear representation prior, the proposed method connects PGO
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(a) Unaligned images with severe illumi-
nation and occlusion

(b) Aligned images via TPGO

Fig. 1. Batch Image Alignment via TPGO. (a) A full set of 60 images of the first person
on the Extended Yale B database [16] with severe illuminations, simulated occlusions,
and random transformations. For this challenging image ensemble, TPGO produces
precise alignment within one pixel accuracy in the recovered eye centers, as shown in
(b).

subspace learning, gradient orientation reconstruction, and batch alignment in
a unified framework with an efficient alternative optimization solution. Besides
inherent robustness from image gradient orientation [15], the “joint TPGO Sub-
space learning and batch Alignment” algorithm maintains the pixel-accurate
registration precision (Fig. 1) and the efficient optimization of Lucas & Kanade
framework [17], under the challenging variations of illuminations and occlusions.
The effectiveness of the proposed TPGO is shown in term of the better alignment
accuracy and robustness against two state-of-the-art batch alignment methods,
namely SIFT-congealing [8] and RASL [14].

(2) A coarse-to-fine batch alignment approach is proposed to handle
the task with large-misalignment and real-world illumination and occlusion. We
observe that the real-world occlusions tend to largely deviate the bounding box
of object detector, and makes the subsequent alignment algorithms cannot con-
verge. Our approach applies a SIFT based pre-alignment procedure to coarsely
align the images, before the fine alignment via TPGO. Experimental results on
the 1000 images of 100 subjects from AR database show that our fully auto-
matic batch alignment results (combined with VJ face detector) can reduce the
recognition errors by a half, when compared to the manually aligned images
distributed by the AR database.

(3) TPGO is demonstrated be beneficial to fully automatic face
recognition applications where a TPGO subspace is first learned from the
training images, and then the gallery images and probe images are aligned to
the subspace so that they can be well compared. Recognition experiment on the
FERET database with 1196 persons demonstrates that TPGO based alignment
is more precise than SIFT-Congealing and Deformable sparse recovery method
[18], as well as the manually labeled eye-coordinate based alignment, which is
widely used as ground-truth alignment for this popular database.
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2 Transformed Principal Gradient Orientation (TPGO)

In this section, we introduce a robust batch alignment approach named Trans-
formed Principal Gradient Orientation (TPGO). The novelty of TPGO comes
from the fact that it exploiting both the illumination/occlusion-invariant de-
scriptor and the low rank structure of aligned images, and, at the same time,
maintains the preciseness of alignment and the elegance of the optimization.

2.1 Problem Formulation

Image Gradient Orientations: For an image of p pixels, we denote the image
gradient at pixel i along the horizontal and vertical direction as gi,x and gi,y
with i = 1, . . . , p. Hence, the gradient orientation (angle) can be computed by
ϕi = arctan(gi,y/gi,x) ∈ [0, 2π), where i = 1, . . . , p. In this way, the gradient ori-
entation of each image Ii can be represented by a p dimensional complex vector
Φi = [ϕi

1, . . . , ϕ
i
p]

T ∈ Rp. Alternatively, one can map the gradient orientation

from an angle to a complex number ϕk → zk = ejϕk , k = 1, . . . , p. In this sense,
the gradient orientation of each image Ii can be represented by a p dimensional
complex vector zi = [ejϕ1 , . . . , ejϕp ]T ∈ Cp.

Gradient Orientation Distance: For two images Ii and Ij , the local dis-
tance of the gradient orientations at pixel k is naturally defined as a cosine
function of the angle difference, i.e. d2(ϕi

k, ϕ
j
k) , [1 − cos(ϕi

k − ϕj
k)], which can

be further formulated by the square distance between corresponding complex

numbers, i.e. d2(ϕi
k, ϕ

j
k) =

1
2∥e

jϕi
k − ejϕ

j
k∥2. Therefore, the gradient orientation

distance between two images Ii and Ij , the sum of the distances at each pixel,
can be naturally formulated by the corresponding complex vectors, i.e.

d2(ϕi, ϕj) =
1

2
∥zi − zj∥2 (1)

Besides its well-known invariance to illumination, the gradient orientation based
distance is also robust to the occlusion of the images because the sum of distance
computed from the occluded portion tends to be zero [15].

Principal Gradient Orientation (PGO) Subspace: Given a set of N im-
ages {Ii}Ni=1, we compute the corresponding set of gradient orientation {zi}Ni=1.
We look for a set of K < p orthonormal bases U = [u1 · · ·uK ] ∈ Cp×K with the
goal of minimizing the sum of the distances from subspace

U∗ = argmin
UK

= ∥Z − UKUH
KZ∥2F , s.t. UHU = I (2)

where Z = [z1 · · · zN ] ∈ Cp×N . The solution can be efficiently given by the K left
singular vectors of Z corresponding to the K largest singular values. Recently,
this subspace learning method has been successfully applied to the illumination-
and occlusion- robust object recognition [15].

Transformed PGO Subspace: Given an ensemble of unaligned images, we
assume that the gradient orientation of unaligned image, if correctly aligned, can
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be robustly represented by a linear combination of the bases of an underlying
low dimensional Transformed principal gradient orientation (TPGO) subspace.
The term “Transformed” indicates that the underlying TPGO subspace would
characterize the intrinsic structure of the aligned object that is invariant to the
transformations of the specific images.

For the simplicity of formulation, we use zi[pi] to denote the gradient orien-

tation vector of the aligned image Ii
(
W(x;p

i
)
)
, T i to denote the reconstructed

template gradient vector of zi[pi], which is represented as a function T i(U,pi) of
the subspace U and transformation parameter pi itself. The objective function
of TPGO is naturally formulated as follows.

E
(
U, {T i}Ni=1, {pi}Ni=1

)
=

N∑
i=1

∥∥zi[pi]− T i(U,pi)]
∥∥2 (3)

2.2 Optimization Procedure

The proposed model (3) involves multiple variables and is hard to minimize di-
rectly. We adopt the alternating minimization scheme which reduces the original
problem into several simpler subproblems. Specifically, we address the subprob-
lems for each of the three variables in an alternating manner and present an
overall efficient optimization problem. At each step, our algorithm reduces the
objective function value, and finally converge to a local minima. To start, we
initialize the alignment parameter pi = 0.

PGO subspace estimation: Optimizing UK Given the current transforma-
tion parameter pi for each image, we want to update the bases of the underly-
ing PGO subspace. We compute the corresponding set of gradient orientation
{zi[pi]}Ni=1. We look for a set of K << p orthonormal bases U = [u1 · · ·uK ] ∈
Cp×K with the goal of minimizing the sum of the distances from subspace

U∗ = argmin
UK

= ∥Z[p]− UKUH
KZ[p]∥2F , s.t. UHU = I (4)

where Z[p] =
[
z1[p1

]
· · · zN [pN ]] ∈ Cp×N . The solution can be efficiently given

by the K left singular vectors of Z[p] corresponding to the K largest singular
values.

Latent Template Reconstruction: Optimizing T i With the underlying
PGO subspace UK and transformation parameter pi, we can reconstruct a latent
template to be regarded as a virtual target for alignment. First, the current
warped gradient orientation vector is projected onto the PGO subspace to obtain
the reconstructed gradient as follows.

gi,t = UKUH
K zi[pi] (5)

A normalization procedure is then applied to compute the template of gradient
orientation

T i
k = gi,tk,x/∥g

i,t
k ∥+ jgi,tk,y/∥g

i,t
k ∥ (6)
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Image-to-Template Alignment: Optimizing pi With the reconstructed
template T i, the minimization of the objective function (3) is decomposed to
N subproblems on the maximization of the coherence between the warped gra-
dient orientation vector and the corresponding template for each image, i.e.

max
pi

∑
k∈P

zik,x[p
i]T i

k,x + zik,y[p
i]T i

k,y (7)

In light of the inverse-compositional gradient correlation algorithm [19], the
transformation parameters are updated by

W(x;p
i
)←W(x;p

i
) ◦W(x;∆p

i
) (8)

where ◦ denotes composition, and

∆pi = λ
(
JTJ

)−1
JTS∆ϕ (9)

where J is a p×n Jacobian matrix whose k-th row has n element corresponding
to the 1× n vector

Jk =
T i
k,x

∂gi,t
k,y

∂p + T i
k,y

∂gi,t
k,x

∂p√
(gi,tk,x)

2 + (gi,tk,y)
2

(10)

and  ∂gi,t
k,x

∂p
∂gi,t

k,y

∂p

 =

[
gi,tk,xx gi,tk,xy

gi,tk,yx gi,tt,yy

]
∂W

∂p

∣∣∣∣
p=0

(11)

S∆ϕ is a N × 1vector whose k-th element is equal to sin
(
ϕi
k

[
pi
]
− ϕi,t

k

)
.

2.3 Algorithm and Implementation Details

The overall algorithm optimizes the PGO bases U , latent gradient orientation
template T i, and alignment parameters pi alternatively. Algorithm 1 describes
the procedures of our Joint TPGO Subspace learning and Batch Alignment
algorithm

There are two loops in Algorithm 1. For each image, the inner loop aims to
aligning it to the current subspace. In each inner loop, since the reconstructed
template may not be accurate, we only update the transformation parameters
once to avoid divergency. In contrast, the outer loop updates the subspace for
more precise alignment.

2.4 Application to Fully Automatic Face Recognition

It should be noted that the proposed TPGO method is readily applicable to fully
automatic face recognition. Specifically, In the training stage, algorithm 1 can
be applied on a training image ensemble (or the gallery ensemble) to obtain a
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Algorithm 1 Joint TPGO Subspace learning and Batch Alignment algorithm

Input: An ensemble of unaligned image gradient orientation{zi}Ni=1,
Output: TPGO subspace bases UK , transformation parameter {pi}Ni=1

1: Initalization: transformation parameter p = 0
2: for lO = 1, 2, . . . , LO do
3: Subspace Estimation: update the PGO subspace UK by minimizing Eqn.(4)
4: for i = 1, 2, . . . , N do
5: for lI = 1, 2, . . . , LI do
6: Template Reconstruction: update the latent template T i using Eqn. (6)
7: Image-to-Template Alignment: update the transformation parameters

pi (once) by (8)
8: end for
9: end for
10: end for

PGO subspace, which defines a fixed canonical template for image comparison.
Then, in the test stage, the gallery image and probe image could be aligned to
the PGO subspace so that they can be suitable compared. In this stage, as the
PGO subspace is settle, the image can be aligned to the subspace by iteratively
performing ”template reconstruction” and ”Image-to-Template Alignment” in
algorithm 1.

Compared with the commonly used eye-coordinate based alignment, a ad-
vantage of this procedure is its full automation, which means no human labeling
work involved in both training and testing stages. In addition, pixel-accurate
alignment could be achieved by TPGO based alignment, but the error induced
by eye localization is usually larger than one pixel, even for the human labeler.
Therefore, it is possible that TPGO-based alignment could be better than eye-
coordinate based alignment for recognition. We would test this possibility in our
final experiment on the FERET database.

3 SIFT feature-based Generic Face Pre-alignment

In practice, severe illumination and occlusion not only affect the object appear-
ance, but also largely deviate the bounding box of the object detector, which
makes alignment algorithms more difficult to converge. For instance, we find that
the scale of the bounding boxes of the commonly used Voila-Jones face detector
is much larger for the face with sunglasses. These large initialized deviations
are often outside the region of attraction for most batch alignment methods,
especially when the images are with occlusion. To address this limitation, we
proposed a SIFT feature based generic face pre-alignment approach1.

Inspired by the similar shape of the common face, our approach relies on
a generic facial SIFT feature database which is constructed by extracting the

1 Due to the space limit, the implementation details of the SIFT feature based pre-
alignment is described in the supplementary material
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SIFT feature points from a large set of aligned facial images. In our experiment,
we have used 200 manually aligned faces from diverse sources. This generic fea-
ture database provides a prior distribution of the feature location of the human
face. Given a novel input image, we first apply the Lowe’s matching algorithm
to obtain a large number of matching point pairs between the input image and
the generic database. Then, we eliminate a large proportion of the mismatch-
ing point pairs by adding a set of normalization constraints on the geometric
information. Finally, based on the remaining matching point pair, we robustly
estimate a similarity transformation (from the generic faces to the input face)
by RANSAC algorithm. The implementation details is described in the supple-
mentary material.

(a) (b) (c)

Fig. 2. (a) the feature match pairs using Lowe’s match algorithm, each red line con-
necting the left to right represents a estimated match point pairs, to simplify, we just
show the location relationship of matched pairs without the scale and orientation of key
points. We use a mean image to visualize the feature database from multiple images;
(b) match point pairs after eliminating most of outliers by our normalization method
(Step 2). (c) the outliers are further reduced by RANSAC, and the transformation from
the black rectangle to the blue rectangle is the similarity transformation we calculate
to roughly align the image.

4 Experiments

In this section, we demonstrate the efficacy of TPGO on batch alignment tasks
despite severe lighting variation and occlusion, by comparing its performance
with SIFT-Congealing and RASL. We test algorithms on a large number of
realistic and challenging images taken from the Extended Yale B (EYB) database
[16], the AR database [20], and FERET database [21]. EYB database contains
full set of illumination images for human faces and AR database involves different
lighting conditions and real-world large occlusions caused by accessories such as
sunglasses and scarf. The FERET database contains a large number of subjects
with diverse variations. Therefore, they are ideal for evaluating the robustness
of batch alignment algorithms.

For comparison purpose, we also implemented three state-of-the-art methods:
(1) SIFT-Congealing [8]: a robust alignment approach to complex images by
minimizing the sum of entropies of the dense SIFT features; (2) RASL [14]:
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Table 1. Mean error of the registered eye centers using different batch alignment
algorithms under different initialized error. The notation ↓ characterizes the proportion
of the error reduced by batch alignment.

Init 1.92±0.88 2.80±1.17 4.03±1.25

SIFT-Congealing 1.84±1.15 (↓4%) 1.78±1.78 (↓36%) 2.32±1.51 (↓42%)

RASL 1.21±1.67 (↓37%) 1.43±1.97 (↓49%) 1.53±1.89 (↓62%)

TPGO 0.68±0.44 (↓65%) 0.76±0.49 (↓73%) 1.39±0.82 (↓66%)

robust alignment via sparse and low-rank decomposition; ( For the first two
algorithms, we preserve all the default settings of the publicly available codes).
For TPGO, the subspace dimension is set to 5 for EYB, and 15 for AR and
FERET. The number of outer iterations is set to 10. For the lO-th outer iteration,
the number of inner iterations is set to LI = max(5, 15− lO).

4.1 Aligning images with severe illuminations and occlusion

The experiment involves the full set of 60 images of the first person on the EYB
database (See Fig. 1). First, all the images are first aligned by two (manually
labelled) eye centers. Then, we perturbed the two points of eye centers using a
Gaussian noise of standard deviation σ. Finally, using the similarity warp which
the original and perturbed points defined, we generate the similarity distorted
image. Specifically, we generate three sets of permuted images with σ={3,4,5},
in which the mean of the eye mislocation2 of the eye centers are 1.92, 2.80,
and 4.03 pixels, respectively. The performance of batch alignment algorithm is
evaluated by the mean, as well as the standard deviation, of the eye mislocation
in the aligned images. If the mean error is reduced after batch alignment, the
algorithm is considered convergent.

The comparative batch alignment performance of the three algorithms is enu-
merated in Table 1 and one can see from the Table that, in all three test cases,
TPGO performs better than RASL, followed by SIFT-Congealing. In addition,
the standard deviation of the eye mislocation become larger after the batch
alignment by RASL and SIFT-Congealing. These results indicate that 1) local
invariance of SIFT feature makes it not hard to perform pixel-accurate align-
ment; and 2) TPGO, which exploits both the illumination invariance and the
low-rank structure of images, performs significantly stabler than RASL, which
just considers the low-rank structure.

We further tests the robustness of the algorithms by adding synthetical oc-
clusions to the illuminated images. On the three sets of images used in previous
experiment, 10%, 20%, and 30% pixel occlusions are synthesized, respectively,

2 In an image ensemble, mean location is calculated as the averaged coordinate of the
(left or right) eye centers in all images. The mean of the eye mislocation is defined as
the average value of all the distances between each eye center and its corresponding
mean location.
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Table 2. Mean error of the registered eye centers using different batch alignment
algorithms under different initialized error and occlusion proportion. The notation ↓
characterizes the proportion of the error reduced by batch alignment.

Init 1.92±0.88 2.80±1.17 4.03±1.25

10% Occlusion

SIFT-Congealing 1.90±1.11 (↓1%) 2.14±1.63 (↓24%) 2.65±2.10 (↓34%)

RASL 1.61±2.30 (↓16%) 1.68±1.77 (↓40%) 1.97±2.22 (↓51%)

TPGO 0.68±0.50 (↓65%) 0.87±1.17 (↓69%) 1.69±1.50 (↓58%)

20% Occlusion

SIFT-Congealing 2.27±1.52 (↑18%) 2.60±2.16 (↓7%) 3.66±2.70 (↓9%)

RASL 1.62±1.67 (↓16%) 2.15±2.16 (↓23%) 2.45±2.58 (↓39%)

TPGO 0.89±0.53 (↓54%) 1.24±1.36 (↓56%) 2.16±1.51 (↓46%)

30% Occlusion

SIFT-Congealing 3.11±1.91 (↑62%) 3.17±2.14 (↑13%) 3.72±2.36 (↓8%)

RASL 2.24±2.07 (↑17%) 2.58±2.41 (↓8%) 2.99±2.43 (↓26%)

TPGO 1.28±0.89 (↓33%) 1.65±1.54 (↓41%) 2.73±1.66 (↓32%)

(a) Original Images (b) Alignment by RASL (c) Alignment by TPGO

Fig. 3. The alignment results of very challenging images with large misalignment,
severe illumination and occlusion.

before the image permutation. The results are listed in Table 2. As expected,
all tested methods become worse when the occlusion proportion because larger.
The mean and standard deviation of the proposed TPGO are smallest un all
test cases. Under all nine test cases with occlusion, TPGO is the only method
that can converge (reduce the mean error after batch alignment) all the time.
Fig. 3 shows some alignment results that TPGO converges to reasonable results
but RASL and SIFT-Congealing fails, as the illumination and occlusion become
severer.

4.2 Aligning 1000 images of 100 subjects with real-world
illuminations and occlusions

This experiment involves a large number of facial images from the AR database.
Unlike the synthetically occluded images in previous experiment, these images
exhibit real-world large occlusions caused by sunglasses and scarves, in additional
to lighting changes. Specifically, 1000 images of 100 subject from the Section
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(a) Init via VJ Detector (b) Pre-alignment via SIFT (c) Alignment via TPGO

Fig. 4. Example images of the batch image alignment on the AR database.

1 of AR database are selected, with the conditions on natural light, left-side
light, right-side light, both-side light, wearing sunglasses, sunglasses plus left-
side light, sunglasses plus right-side light, wearing scarves, scarves plus left-side
light, scarves plus right-side light, respectively (See Table 3 for examples).

We obtain an initial estimate of the transformation in each image using
the VJ detector of OpenCV, followed by a SIFT feature based pre-alignment
procedure3. After that, we align the images to an 80×80 canonical frame using
the three tested batch alignment methods. Finally, since there is no ground
truth for this data set, we evaluate the preciseness of batch image alignment
methods in term of the comparative recognition accuracy on their aligned image
ensembles.

For each subject, the image with natural light is used as gallery, and the rest
9 images are used as probes. For the simplicity, whitened cosine similarity based
nearest neighbor classifier is used for recognition. We have tested this classifier
with LBP, Gabor, and HOG features, and find the LBP feature produce best
results for all kinds of aligned images. Specifically, the LBPU2

8,2 operator [23] is
adopted in 10×10 pixel cell, for each cell accumulating a local histogram of 59
uniform patterns over the pixels of the cell. The combined histogram entries form
the representation, resulting in a 3776 (8×8×59) dimensional feature vector.

Table 3 enumerates the comparative recognition accuracy on differently aligned
ensembles. One can see from the table that (1) the cropped facial images via VJ
detector receive a low recognition accuracy, especially for the images wearing
sunglasses. This is because, as shown in Fig. 4(a), the sunglasses largely de-
viate the scale and translation of the bounding box, when compared with the
non-occluded images. (2) Our pre-alignment procedure is effective to correct the

3 None of the tested algorithms can align the images with sunglasses precisely without
the SIFT based pre-alignment, because the initial transformation estimate of the off-
the-shelf detector is largely biased by the occlusions. The detailed implementation
of the pre-alignment procedure is described in the supplementary material.
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Table 3. Evaluation of preciseness of batch image alignment methods in term of the
comparative recognition accuracy (%) on their aligned image ensembles of the 1000
images from AR database. The natural image of each subject is used for template
and the others are used as probes. The notation ↓ characterizes the proportion of the
recognition error reduced by the batch alignment method.

Alignment Total

VJ-Detector 98 97 73 15 9 6 79 68 53 55.3

Pre-align 96 99 77 85 67 56 89 66 53 76.4
↑100% ↓67% ↓15% ↓82% ↓64% ↓53% ↓48% ↑6% ↓0% ↓47%

Pre-align+ 100 99 92 93 75 62 85 63 46 79.4
SIFT-Congealing ↓100% ↓67% ↓70% ↓92% ↓73% ↓60% ↓29% ↑16% ↑15% ↓54%
Pre-align+ 100 100 94 94 72 74 95 87 75 87.9
RASL ↓100% ↓100% ↓78% ↓93% ↓69% ↓72% ↓76% ↓59% ↓47% ↓73%
Pre-align+ 100 100 95 99 89 84 98 89 85 93.2
TPGO ↓100% ↓100% ↓81% ↓99% ↓88% ↓83% ↓90% ↓66% ↓68% ↓85%
Handcrafts [22] 99 98 90 97 82 71 94 85 64 86.7

deviated detection of the occluded images, resulting in a notable improvemen-
t on recognition accuracy, as shown in 4(b). (3) All the three fine-alignment
algorithms provide further improved accuracy based on the pre-alignment re-
sults. In particular, TPGO produces the highest accuracy on all the nine testing
conditions. Some example of TPGO-aligned images are shown in 4(c).

Due to the difficulty in aligning the occluded images, AR database has pro-
vided a standard distribution of aligned images by the handcrafted approach
described in [22]. To compare our automatic alignment with the manual align-
ment, the manually aligned images are first cropped to include similar facial
region with our alignment, and then interpolated to the same size of 80×80
pixels. As listed in Table 3, TPGO produces the higher accuracy than the hand-
crafted approach on all the nine testing conditions, and the overall error rate is
reduced by over a half (from 13.5% to 6.8%). This result suggests that TPGO
could potentially be very helpful for improving the performance of current object
clustering or recognition systems despite large object occlusion.

Speed and scalability of TPGO. For this large-scale task, using 64-bit
Matlab platform on a PC with Dual Core 2.93 GHz Pentium CPU and 4 GB
memory, our implementation of TPGO requires less than 8 minutes to align the
1000 images of size 80×80, whereas RASL requires over 3 hours. This impres-
sive computational efficiency is a direct result of using correlation of gradient
orientation, instead of L1-norm of pixel intensity, for robust optimization.

4.3 Fully Automatic Face Recognition

In this section, we evaluate the effectiveness of TPGO on fully automatic face
recognition using 3307 facial images of 1196 subjects from the gray-level FER-
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ET database, which is a standard testbed for face recognition technologies [21].
The tested images display diversity across gender, ethnicity, and age, and were
acquired without any restrictions imposed on expression, illumination and ac-
cessories for examples). Specifically, the experiment follows the standard data
partitions of the FERET database:

• gallery training set contains 1,196 images of 1,196 people.
• fb probe set contains 1,195 images taken with an alternative facial expression.
• fc probe set contains 194 images taken under different lighting conditions.
• dup1 probe set contains 722 images taken in a different time.
• dup2 probe set contains 234 images taken at least a year later, which is a
subset of the dup1 set.

Our algorithm starts with facial images detected by the common face de-
tectors. Viola and Jones face detector4, which outputs a square bounding box
indicating the predicated center of the face and its scale, is applied for its stable
performance and high speed. Given a detected face image of the width w, we crop
the face according to the eye locations5 of (0.305w, 0.385w) and (0.695w, 0.385w)
using the CSU face identification evaluation system [24]. The cropped and s-
caled face images of a standard size 150×130, which subsequently is referred to
as “detected faces”. These detected faces are used for the initialization of TP-
GO learning. Since the detection deviation of the FERET images is small, the
pre-alignment is not involved in this experiment.

It is well-known that sparse Representation-based Classification6 (SRC) [25]
is sensitive to the pixel-level misalignment of image, we therefore use it to eval-
uate the precision of alignment for automatic recognition. To solve the misalign-
ment problem in SRC, a Deformable Sparse Recovery and Classification (DSRC)
[18] have used tools from sparse representation to address the alignment prob-
lem. For the simplicity, TPGO and SIFT-Congealing7 first build an appearance
model from the batch alignment of the gallery set, and than align the probe
images to the model for recognition.

For comparison purpose, we also apply SRC to the eye-aligned faces and the
detected faces. For a fair comparison, all the aligned faces are all downsampled
to 75×65 to be compatible with those used in [18]. The face recognition perfor-
mance of SRC using the five alignment methods is tabulated in Table I, which
shows that the best performance on three of the four probe sets is achieved

4 We use the OpenCV implementation of the Viola and Jones’s face detector. Since
there is only one face in each image, we reduce the false alarms by reserving the
bounding box of the maximum size in each image. The detector missed only six
faces out of all the 3307 images involved in our experiments, and we have manually
completed these six bounding boxes.

5 They are roughly the averaged locations of the two eyes of the typical bounding
faces determined by the VJ face detector.

6 The Homotopy method is applied to solve the ℓ1-minimization problem with the
regularization parameter λ = 0.003.

7 RASL has not been tested since it is not directly applicable to align unseen images
for automatic recognition.
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using TPGO-based faces. DSRC performs better than TPGO+SRC only when
expression variation (fb set) is presented. In contrast, using TPGO-aligned faces
achieves substantially improved accuracy (about 6% to 18%) than other align-
ment methods on the fc, dup1, and dup2 probe sets. This suggests that TPGO
constructs an unified appearance model that is more robust against the complex
variations of the facial appearance.

Table 4. Comparative FERET recognition rates on differently aligned faces using SRC

Alignment fb fc dup1 dup2
Human labeled Eye-aligned faces+SRC 83.2 74.2 46.1 30.8
Detected faces+SRC 73.5 38.7 34.5 33.3
DSRC [18] 95.2 28.4 46.1 20.3
SIFT-Congealing + SRC 82.0 73.2 55.3 42.3
TPGO-aligned faces+SRC 87.9 82.4 61.2 50.0

5 Conclusions

We have presented an image alignment method that can simultaneously align
multiple images by exploiting both the illumination/occlusion invariance and
the low rank property of the aligned image gradient orientation. Our approach
is based on recent advances in image representation of gradient orientation that
come with theoretical guarantees. The proposed algorithm consists of solving an
efficient alternating optimization. This allows us to simultaneously align hun-
dreds or even thousands of images on a typical PC in matter of minutes. We
have shown the efficacy of our method with extensive experiments on images
taken under laboratory conditions and on natural images of various types taken
under a wide range of real-world conditions.

Experimental results show TPGO based batch alignment is more precise
and robust than the state-of-the-art methods such as RASL and SIFT feature
base Congealing. Furthermore, integrated with our proposed SIFT based pre-
alignment procedure, TPGO is able to align a large number of images of multiple
objects with large deviation, illumination, and occlusion in the precision that
surpasses the handcrafted alignment, in term of our face recognition experiments
on the AR and FERET databases.
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